Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Circ Res ; 132(4): 483-497, 2023 02 17.
Article in English | MEDLINE | ID: covidwho-2300453

ABSTRACT

Heart disease is a significant burden on global health care systems and is a leading cause of death each year. To improve our understanding of heart disease, high quality disease models are needed. These will facilitate the discovery and development of new treatments for heart disease. Traditionally, researchers have relied on 2D monolayer systems or animal models of heart disease to elucidate pathophysiology and drug responses. Heart-on-a-chip (HOC) technology is an emerging field where cardiomyocytes among other cell types in the heart can be used to generate functional, beating cardiac microtissues that recapitulate many features of the human heart. HOC models are showing great promise as disease modeling platforms and are poised to serve as important tools in the drug development pipeline. By leveraging advances in human pluripotent stem cell-derived cardiomyocyte biology and microfabrication technology, diseased HOCs are highly tuneable and can be generated via different approaches such as: using cells with defined genetic backgrounds (patient-derived cells), adding small molecules, modifying the cells' environment, altering cell ratio/composition of microtissues, among others. HOCs have been used to faithfully model aspects of arrhythmia, fibrosis, infection, cardiomyopathies, and ischemia, to name a few. In this review, we highlight recent advances in disease modeling using HOC systems, describing instances where these models outperformed other models in terms of reproducing disease phenotypes and/or led to drug development.


Subject(s)
Cardiomyopathies , Heart Diseases , Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Animals , Humans , Heart Diseases/therapy , Heart Diseases/metabolism , Myocytes, Cardiac/metabolism , Cardiomyopathies/metabolism , Pluripotent Stem Cells/metabolism , Lab-On-A-Chip Devices
2.
J Med Virol ; 95(4): e28735, 2023 04.
Article in English | MEDLINE | ID: covidwho-2306536

ABSTRACT

Data on the safety of inactivated COVID-19 vaccines in pregnant women is limited and monitoring pregnancy outcomes is required. We aimed to examine whether vaccination with inactivated COVID-19 vaccines before conception was associated with pregnancy complications or adverse birth outcomes. We conducted a birth cohort study in Shanghai, China. A total of 7000 healthy pregnant women were enrolled, of whom 5848 were followed up through delivery. Vaccine administration information was obtained from electronic vaccination records. Relative risks (RRs) of gestational diabetes mellitus (GDM), hypertensive disorders in pregnancy (HDP), intrahepatic cholestasis of pregnancy (ICP), preterm birth (PTB), low birth weight (LBW), and macrosomia associated with COVID-19 vaccination were estimated by multivariable-adjusted log-binomial analysis. After exclusion, 5457 participants were included in the final analysis, of whom 2668 (48.9%) received at least two doses of an inactivated vaccine before conception. Compared with unvaccinated women, there was no significant increase in the risks of GDM (RR = 0.80, 95% confidence interval [CI], 0.69, 0.93), HDP (RR = 0.88, 95% CI, 0.70, 1.11), or ICP (RR = 1.61, 95% CI, 0.95, 2.72) in vaccinated women. Similarly, vaccination was not significantly associated with any increased risks of PTB (RR = 0.84, 95% CI, 0.67, 1.04), LBW (RR = 0.85, 95% CI, 0.66, 1.11), or macrosomia (RR = 1.10, 95% CI, 0.86, 1.42). The observed associations remained in all sensitivity analyses. Our findings suggested that vaccination with inactivated COVID-19 vaccines was not significantly associated with an increased risk of pregnancy complications or adverse birth outcomes.


Subject(s)
COVID-19 , Pregnancy Complications , Premature Birth , Pregnancy , Infant, Newborn , Female , Humans , Cohort Studies , COVID-19 Vaccines/adverse effects , Pregnant Women , Fetal Macrosomia , Premature Birth/epidemiology , East Asian People , China/epidemiology , COVID-19/prevention & control , Pregnancy Outcome
3.
Heliyon ; 9(1): e12968, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2260319

ABSTRACT

Corona Virus Disease 2019 (COVID-19) is presently the largest international public health event, individuals infected by the virus not only have symptoms such as fever, dry cough, and lung infection at the time of onset, but also possibly have sequelae in the cardiovascular system, respiratory system, nervous system, mental health and other aspects. However, numerous studies have depicted that the active ingredients in tea show good antiviral effects and can treat various diseases by regulating multiple pathways, and the therapeutic effects are associated with the categories of chemical components in tea. In this review, the differences in the content of key active ingredients in different types of tea are summarized. In addition, we also highlighted their effects on COVID-19 and connected sequelae, further demonstrating the possibility of developing a formulation for the prevention and treatment of COVID-19 and its sequelae through tea extracts. We have a tendency to suggest forestalling and treating COVID-19 and its sequelae through scientific tea drinking.

5.
J Med Virol ; 2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2237585

ABSTRACT

Despite the high vaccination coverage, potential COVID-19 vaccine-induced adverse effects, especially in pregnant women, have not been fully characterized. We examined the association between COVID-19 vaccination before conception and maternal thyroid function during early pregnancy. We conducted a retrospective cohort study in Shanghai, China. A total of 6979 pregnant women were included. Vaccine administration was obtained from electronic vaccination records. Serum levels of thyroid hormone were measured by fluorescence and chemiluminescence immunoassays. Among the 6979 included pregnant women, 3470 (49.7%) received at least two doses of an inactivated vaccine. COVID-19 vaccination had a statistically significant association with both maternal serum levels of free thyroxine (FT4) and thyroid stimulating hormone (TSH). Compared with unvaccinated pregnant women, the mean FT4 levels were lower in pregnant women who had been vaccinated within 3 months before the date of conception by 0.27 pmol/L (ß = -0.27, 95% confidence interval [CI], -0.42, -0.12), and the mean TSH levels were higher by 0.08 mIU/L (ß = 0.08, 95% CI, 0.00, 0.15). However, when the interval from vaccination to conception was prolonged to more than 3 months, COVID-19 vaccination was not associated with serum FT4 or TSH levels. Moreover, we found that COVID-19 vaccination did not significantly associate with maternal hypothyroidism. Our study suggested that vaccination with inactivated COVID-19 vaccines before conception might result in a small change in maternal thyroid function, but this did not reach clinically significant levels.

6.
Clin Transl Med ; 13(1): e1171, 2023 01.
Article in English | MEDLINE | ID: covidwho-2172838

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19), which is still devastating economies and communities globally. The increasing infections of variants of concern (VOCs) in vaccinated population have raised concerns about the effectiveness of current vaccines. Patients with autoimmune diseases (PAD) under immunosuppressant treatments are facing higher risk of infection and potentially lower immune responses to SARS-CoV-2 vaccination. METHODS: Blood samples were collected from PAD or healthy controls (HC) who finished two or three doses of inactivated vaccines. Spike peptides derived from wild-type strain, delta, omicron BA.1 were utilised to evaluate T cell responses and their cross-recognition of delta and omicron in HC and PAD by flow cytometry and ex vivo IFNγ-ELISpot. RESULTS: We found that inactivated vaccine-induced spike-specific memory T cells were long-lasting in both PAD and HC. These spike-specific T cells were highly conserved and cross-recognized delta and omicron. Moreover, a third inactivated vaccine expanded spike-specific T cells that responded to delta and omicron spike peptides substantially in both PAD and HC. Importantly, the polyfunctionality of spike-specific memory T cells was preserved in terms of cytokine and cytotoxic responses. Although the extent of T cell responses was lower in PAD after two-dose, T cell responses were boosted to a greater magnitude in PAD by the third dose, bringing comparable spike-specific T cell immunity after the third dose. CONCLUSION: Inactivated vaccine-induced spike-specific T cells remain largely intact against delta and omicron variants. This study expands our understanding of inactivated vaccine-induced T cell responses in PAD and HC, which could have important indications for vaccination strategy.


Subject(s)
Autoimmune Diseases , COVID-19 Vaccines , COVID-19 , T-Lymphocytes , Humans , Autoimmune Diseases/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , SARS-CoV-2 , T-Lymphocytes/immunology , Vaccines, Inactivated
7.
Emerg Microbes Infect ; 11(1): 2222-2228, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1997030

ABSTRACT

ABSTRACTMulticenter case series has reported patients with hepatic injury following COVID-19 vaccination, which raised concern for the possibility of vaccine-induced liver dysfunction. We aimed to assess the impact of COVID-19 vaccination on liver function of pregnant women, who may be uniquely susceptible to vaccine-induced liver dysfunction. We conducted a retrospective cohort study at a tertiary hospital in Shanghai, China. Vaccine administration was obtained from the electronic vaccination record. Serum levels of alanine transaminase (ALT), aspartate transaminase (AST), total bile acid (TBA) and total bilirubin (TBIL) in early pregnancy were determined by enzymatic methods. Among the 7745 included pregnant women, 3832 (49.5%) received at least two doses of an inactivated vaccine. COVID-19 vaccination was significantly associated with higher levels of maternal serum TBA. Compared with unvaccinated pregnant women, the mean TBA levels increased by 0.17 µmol/L (ß = 0.17, 95% CI, 0.04, 0.31) for women who had been vaccinated within 3 months before the date of conception. Moreover, COVID-19 vaccination was significantly associated with an increased risk of maternal hyperbileacidemia. The risk of hyperbileacidemia increased by 113% (RR = 2.13; 95% CI, 1.17-3.87) for pregnant women who had been vaccinated within 3 months before conception compared with unvaccinated pregnant women. However, when the interval from complete vaccination to conception was prolonged to more than 3 months, COVID-19 vaccination was not associated with serum TBA levels or maternal hyperbileacidemia. Our findings suggest that vaccination with inactivated COVID-19 vaccines more than 3 months before conception have no detrimental effects on maternal liver function in early pregnancy.


Subject(s)
COVID-19 Vaccines , COVID-19 , Pregnant Women , Alanine Transaminase , Aspartate Aminotransferases , Bile Acids and Salts , Bilirubin , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , China/epidemiology , Cohort Studies , Female , Humans , Liver , Liver Function Tests , Pregnancy , Retrospective Studies , Vaccines, Inactivated
8.
Sci Total Environ ; 825: 153964, 2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-1689055

ABSTRACT

Fine particulate matter (PM2.5) pollution poses significant health concerns worldwide and can cause respiratory diseases. However, how it causes health problems is still poorly understood. Angiotensin-converting enzyme (ACE)2 is a terminal carboxypeptidase implicated in the functions of renin-angiotensin system (RAS) and plays a crucial role in the control of lung inflammation. To investigate whether ACE2 functions in PM2.5-induced lung inflammation, wild-type (WT) C57BL/6J mice and ACE2 knock-out (KO) mice were intratracheally instilled with PBS or PM2.5 suspension for 3 consecutive days, respectively. The concentrations of cytokines in bronchoalveolar lavage fluid (BALF) were determined by ELISA. The expression of ACE2 and ACE and activation of inflammatory signaling pathways in lung tissues were evaluated by immunofluorescence staining and Western blotting. We found that PM2.5 exposure increased ACE2 expression. Loss of ACE2 significantly elevated the levels of total proteins, total cells, and the concentrations of MCP-1, IL-1ß in BALF after PM2.5 challenge. Additionally, loss of ACE2 enhanced lung pathologies, airway resistance, and inflammatory signaling activation. Collectively, loss of ACE2 exacerbates PM2.5-induced acute lung injury in mice.


Subject(s)
Acute Lung Injury , Pneumonia , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Angiotensin-Converting Enzyme 2 , Animals , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Particulate Matter/metabolism , Particulate Matter/toxicity
9.
Cell Discov ; 8(1): 10, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1661960

ABSTRACT

SARS-CoV-2 inactivated vaccines have shown remarkable efficacy in clinical trials, especially in reducing severe illness and casualty. However, the waning of humoral immunity over time has raised concern over the durability of immune memory following vaccination. Thus, we conducted a nonrandomized trial among the healthcare workers (HCWs) to investigate the long-term sustainability of SARS-CoV-2-specific B cells and T cells stimulated by inactivated vaccines and the potential need for a third booster dose. Although neutralizing antibodies elicited by the standard two-dose vaccination schedule dropped from a peak of 29.3 arbitrary units (AU)/mL to 8.8 AU/mL 5 months after the second vaccination, spike-specific memory B and T cells were still detectable, forming the basis for a quick recall response. As expected, the faded humoral immune response was vigorously elevated to 63.6 AU/mL by 7.2 folds 1 week after the third dose along with abundant spike-specific circulating follicular helper T cells in parallel. Meanwhile, spike-specific CD4+ and CD8+ T cells were also robustly elevated by 5.9 and 2.7 folds respectively. Robust expansion of memory pools by the third dose potentiated greater durability of protective immune responses. Another key finding in this trial was that HCWs with low serological response to two doses were not truly "non-responders" but fully equipped with immune memory that could be quickly recalled by a third dose even 5 months after the second vaccination. Collectively, these data provide insights into the generation of long-term immunological memory by the inactivated vaccine, which could be rapidly recalled and further boosted by a third dose.

11.
J Med Virol ; 93(10): 5896-5907, 2021 10.
Article in English | MEDLINE | ID: covidwho-1272210

ABSTRACT

The second wave of COVID-19 has caused a dramatic increase in COVID-19 cases and deaths globally. An accurate prediction of its development trend is significant. We predicted the development trend of the second wave of COVID-19 in five European countries, including France, Germany, Italy, Spain, and the UK. We first built models to predict daily numbers of COVID-19 cases and deaths based on the data of the first wave of COVID-19 in these countries. Based on these models, we built new models to predict the development trend of the second wave of COVID-19. We predicted that the second wave of COVID-19 would have peaked around on November 16, 2020, January 10, 2021, December 1, 2020, March 1, 2021, and January 10, 2021, in France, Germany, Italy, Spain, and the UK, respectively. It will be basically under control on April 26, 2021, September 20, 2021, August 1, 2021, September 15, 2021, and August 10, 2021, in these countries, respectively. Their total number of COVID-19 cases will reach around 4,745,000, 7,890,000, 6,852,000, 8,071,000, and 10,198,000, respectively, and total number of COVID-19 deaths will be around 262,000, 262,000, 231,000, 253,000, and 350,000 during the second wave of COVID-19. The COVID-19 mortality rate in the second wave of COVID-19 is predicted to be about 3.4%, 3.5%, 3.4%, 3.4%, and 3.1% in France, Spain, Germany, France, and the UK. The second wave of COVID-19 is expected to cause many more cases and deaths, last for a much longer time, and have a lower COVID-19 mortality rate than the first wave.


Subject(s)
COVID-19/epidemiology , Forecasting , COVID-19/mortality , Europe/epidemiology , Humans , Incidence , Machine Learning , Models, Statistical , Mortality/trends , Prevalence , SARS-CoV-2
12.
Front Pharmacol ; 12: 607408, 2021.
Article in English | MEDLINE | ID: covidwho-1158351

ABSTRACT

Background: Limited data on the efficacy and safety of currently applied COVID-19 therapeutics and their impact on COVID-19 outcomes have raised additional concern. Objective and Methods: To estimate the efficacy and safety of COVID-19 therapeutics, we performed meta-analyses of the studies reporting clinical features and treatments of COVID-19 published from January 21 to September 6, 2020. Results: We included 136 studies that involved 102,345 COVID-19 patients. The most prevalent treatments were antibiotics (proportion: 0.59, 95% CI: [0.51, 0.67]) and antivirals (proportion: 0.52, 95% CI: [0.44, 0.60]). The combination of lopinavir/ritonavir and Arbidol was the most effective in treating COVID-19 (standardized mean difference (SMD) = 0.68, 95% CI: [0.15, 1.21]). The use of corticosteroids was associated with a small clinical improvement (SMD = -0.40, 95% CI: [-0.85, -0.23]), but with a higher risk of disease progression and death (mortality: RR = 9.26, 95% CI: [4.81, 17.80]; hospitalization length: RR = 1.54, 95% CI: [1.39, 1.72]; severe adverse events: RR = 2.65, 95% CI: [2.09, 3.37]). The use of hydroxychloroquine was associated with a higher risk of death (RR = 1.68, 95% CI: [1.18, 2.38]). The combination of lopinavir/ritonavir, ribavirin, and interferon-ß (RR = 0.34, 95% CI: [0.22, 0.54]); hydroxychloroquine (RR = 0.58, 95% CI: [0.39, 0.58]); and lopinavir/ritonavir (RR = 0.72, 95% CI: [0.56, 0.91]) was associated with reduced hospitalization length. Hydrocortisone (RR = 0.05, 95% CI: [0.03, 0.10]) and remdesivir (RR = 0.74, 95% CI: [0.62, 0.90]) were associated with lower incidence of severe adverse events. Dexamethasone was not significant in reducing disease progression (RR = 0.45, 95% CI: [0.16, 1.25]) and mortality (RR = 0.90, 95% CI: [0.70, 1.16]). The estimated combination of corticosteroids with antivirals was associated with a better clinical improvement than antivirals alone (SMD = -1.09, 95% CI: [-1.64, -0.53]). Conclusion: Antivirals are safe and effective in COVID-19 treatment. Remdesivir cannot significantly reduce COVID-19 mortality and hospitalization length, while it is associated with a lower incidence of severe adverse events. Corticosteroids could increase COVID-19 severity, but it could be beneficial when combined with antivirals. Our data are potentially valuable for the clinical treatment and management of COVID-19 patients.

13.
Chem Biol Interact ; 335: 109370, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-1014379

ABSTRACT

The aberrant expression level of SARS-CoV-2 cell receptor gene ACE2 was reported in lung adenocarcinoma (LUAD) comorbidity of COVID-19. However, the association of ACE2 expression levels with immunosuppression and metabolic reprogramming in LUAD remains lacking. We investigated the expression level of ACE2, an association of ACE2 expression level with various types of immune signatures, immune ratios, and pathways. We employed a weighted gene co-expression network analysis (WGCNA) R package to identify the gene modules and investigated prognostic roles of hub genes in LUAD. Overexpression of ACE2 level was found in LUAD and ACE2 expression was negatively associated with various types of immune signatures including CD8+ T cells, CD4+ regulatory T cells, NK cells, and T cell activation. Besides, ACE2 upregulation was not only associated with CD8+ T cell/CD4+ regulatory T cell ratios but also linked with downregulation of immune-markers including CD8A, KLRC1, GZMA, GZMB, NKG7, CCL4, and IFNG. Moreover, the ACE2 expression level was found to be associated with the enrichment level of various metabolic pathways and it was also found that the metabolic pathways are directly positively correlated with the increased expression levels of ACE2, indicating that the overexpression of ACE2 is associated with metabolic reprogramming in LUAD. Furthermore, WGCNA based analysis revealed the gene modules in the high-ACE2-expression-level group of LUAD and identified GCLC and SLC7A11 hub genes which are not only highly expressed in lung adenocarcinoma but also correlated with the poor survival prognosis. Our analysis of ACE2 in LUAD tissues suggests that ACE2 is not only a receptor but is also associated with immunosuppression and metabolic reprogramming. This study underlines the clue for understanding the clinical significance of ACE2 in COVID-19 patients with LUAD comorbidity.


Subject(s)
Adenocarcinoma of Lung/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Immunity, Cellular/genetics , Immunity, Innate/genetics , Lung Neoplasms/metabolism , Adenocarcinoma of Lung/epidemiology , Amino Acid Transport System y+/genetics , Angiotensin-Converting Enzyme 2/genetics , COVID-19/epidemiology , Comorbidity , Computational Biology , Databases, Genetic/statistics & numerical data , Female , Gene Expression Regulation, Neoplastic , Glutamate-Cysteine Ligase/genetics , Humans , Lung Neoplasms/epidemiology , Lymphocyte Activation/genetics , Male , Non-Smokers , Protein Interaction Maps/genetics , SARS-CoV-2 , Smokers , T-Lymphocytes/metabolism , Transcriptome , Up-Regulation
14.
J Med Virol ; 93(4): 2493-2498, 2021 04.
Article in English | MEDLINE | ID: covidwho-1014088

ABSTRACT

The coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in December 2019 and was basically under control in April 2020 in Wuhan. To explore the impact of intervention measures on the COVID-19 epidemic, we established susceptible-exposed-infectious-recovered (SEIR) models to predict the epidemic characteristics of COVID-19 at four different phases (beginning, outbreak, recession, and plateau) from January 1st to March 30th, 2020. We found that the infection rate rapidly grew up to 0.3647 at Phase II from 0.1100 at Phase I and went down to 0.0600 and 0.0006 at Phase III and IV, respectively. The reproduction numbers of COVID-19 were 10.7843, 13.8144, 1.4815, and 0.0137 at Phase I, II, III, and IV, respectively. These results suggest that intensive interventions, including compulsory home isolation and rapid improvement of medical resources, can effectively reduce the COVID-19 transmission. Furthermore, the predicted COVID-19 epidemic trend by our models was close to the actual epidemic trend in Wuhan. Our phase-based SEIR models demonstrate that intensive intervention measures can effectively control COVID-19 spread even without specific medicines and vaccines against this disease.


Subject(s)
COVID-19/epidemiology , China/epidemiology , Disease Outbreaks , Disease Susceptibility , Epidemics , Humans , Models, Statistical , Mortality , Retrospective Studies , SARS-CoV-2/isolation & purification
15.
Sci Total Environ ; 764: 142810, 2021 Apr 10.
Article in English | MEDLINE | ID: covidwho-857154

ABSTRACT

The COVID-19 virus has infected more than 38 million people and resulted in more than one million deaths worldwide as of October 14, 2020. By using the logistic regression model, we identified novel critical factors associated with COVID19 cases, death, and case fatality rates in 154 countries and in the 50 U.S. states. Among numerous factors associated with COVID-19 risk, economic inequality enhanced the risk of COVID-19 transmission. The per capita hospital beds correlated negatively with COVID-19 deaths. Blood types B and AB were protective factors for COVID-19 risk, while blood type A was a risk factor. The prevalence of HIV and influenza and pneumonia was associated with reduced COVID-19 risk. Increased intake of vegetables, edible oil, protein, vitamin D, and vitamin K was associated with reduced COVID-19 risk, while increased intake of alcohol was associated with increased COVID-19 risk. Other factors included age, sex, temperature, humidity, social distancing, smoking, health investment, urbanization level, and race. High temperature is a more compelling factor mitigating COVID-19 transmission than low temperature. Our comprehensive identification of the factors affecting COVID-19 transmission and fatality may provide new insights into the COVID-19 pandemic and advise effective strategies for preventing and migrating COVID-19 spread.


Subject(s)
COVID-19 , Coronavirus Infections , Adolescent , Aged , Child , Child, Preschool , Coronavirus Infections/epidemiology , Female , Humans , Infant , Machine Learning , Male , Pandemics , SARS-CoV-2 , United States
16.
Front Immunol ; 11: 552909, 2020.
Article in English | MEDLINE | ID: covidwho-803900

ABSTRACT

The 2019 novel coronavirus (SARS-CoV-2) pandemic has caused a global health emergency. The outbreak of this virus has raised a number of questions: What is SARS-CoV-2? How transmissible is SARS-CoV-2? How severely affected are patients infected with SARS-CoV-2? What are the risk factors for viral infection? What are the differences between this novel coronavirus and other coronaviruses? To answer these questions, we performed a comparative study of four pathogenic viruses that primarily attack the respiratory system and may cause death, namely, SARS-CoV-2, severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and influenza A viruses (H1N1 and H3N2 strains). This comparative study provides a critical evaluation of the origin, genomic features, transmission, and pathogenicity of these viruses. Because the coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 is ongoing, this evaluation may inform public health administrators and medical experts to aid in curbing the pandemic's progression.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/epidemiology , Middle East Respiratory Syndrome Coronavirus/genetics , Pneumonia, Viral/epidemiology , Severe Acute Respiratory Syndrome/epidemiology , Severe acute respiratory syndrome-related coronavirus/genetics , Animals , Betacoronavirus/pathogenicity , Birds/virology , COVID-19 , Coronavirus Infections/transmission , Coronavirus Infections/virology , Genome, Viral , Humans , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H3N2 Subtype/pathogenicity , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Influenza in Birds/virology , Influenza, Human/transmission , Influenza, Human/virology , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Pandemics , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Severe Acute Respiratory Syndrome/transmission , Severe Acute Respiratory Syndrome/virology , Virulence/immunology
17.
Comput Struct Biotechnol J ; 18: 2438-2444, 2020.
Article in English | MEDLINE | ID: covidwho-785409

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 29 million people and has caused more than 900,000 deaths worldwide as of September 14, 2020. The SARS-CoV-2 human cell receptor ACE2 has recently received extensive attention for its role in SARS-CoV-2 infection. Many studies have also explored the association between ACE2 and cancer. However, a systemic investigation into associations between ACE2 and oncogenic pathways, tumor progression, and clinical outcomes in pan-cancer remains lacking. Using cancer genomics datasets from the Cancer Genome Atlas (TCGA) program, we performed computational analyses of associations between ACE2 expression and antitumor immunity, immunotherapy response, oncogenic pathways, tumor progression phenotypes, and clinical outcomes in 13 cancer cohorts. We found that ACE2 upregulation was associated with increased antitumor immune signatures and PD-L1 expression, and favorable anti-PD-1/PD-L1/CTLA-4 immunotherapy response. ACE2 expression levels inversely correlated with the activity of cell cycle, mismatch repair, TGF-ß, Wnt, VEGF, and Notch signaling pathways. Moreover, ACE2 expression levels had significant inverse correlations with tumor proliferation, stemness, and epithelial-mesenchymal transition. ACE2 upregulation was associated with favorable survival in pan-cancer and in multiple individual cancer types. These results suggest that ACE2 is a potential protective factor for cancer progression. Our data may provide potential clinical implications for treating cancer patients infected with SARS-CoV-2.

18.
Infect Dis Poverty ; 9(1): 45, 2020 Apr 28.
Article in English | MEDLINE | ID: covidwho-133403

ABSTRACT

BACKGROUND: Since its discovery in December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 2 180 000 people worldwide and has caused more than 150 000 deaths as of April 16, 2020. SARS-CoV-2, which is the virus causing coronavirus disease 2019 (COVID-19), uses the angiotensin-converting enzyme 2 (ACE2) as a cell receptor to invade human cells. Thus, ACE2 is the key to understanding the mechanism of SARS-CoV-2 infection. This study is to investigate the ACE2 expression in various human tissues in order to provide insights into the mechanism of SARS-CoV-2 infection. METHODS: We compared ACE2 expression levels across 31 normal human tissues between males and females and between younger (ages ≤ 49 years) and older (ages > 49 years) persons using two-sided Student's t test. We also investigated the correlations between ACE2 expression and immune signatures in various tissues using Pearson's correlation test. RESULTS: ACE2 expression levels were the highest in the small intestine, testis, kidneys, heart, thyroid, and adipose tissue, and were the lowest in the blood, spleen, bone marrow, brain, blood vessels, and muscle. ACE2 showed medium expression levels in the lungs, colon, liver, bladder, and adrenal gland. ACE2 was not differentially expressed between males and females or between younger and older persons in any tissue. In the skin, digestive system, brain, and blood vessels, ACE2 expression levels were positively associated with immune signatures in both males and females. In the thyroid and lungs, ACE2 expression levels were positively and negatively associated with immune signatures in males and females, respectively, and in the lungs they had a positive and a negative correlation in the older and younger groups, respectively. CONCLUSIONS: Our data indicate that SARS-CoV-2 may infect other tissues aside from the lungs and infect persons with different sexes, ages, and races equally. The different host immune responses to SARS-CoV-2 infection may partially explain why males and females, young and old persons infected with this virus have markedly distinct disease severity. This study provides new insights into the role of ACE2 in the SARS-CoV-2 pandemic.


Subject(s)
Betacoronavirus , Peptidyl-Dipeptidase A/genetics , Receptors, Virus/genetics , Adult , Age Factors , Aged , Angiotensin-Converting Enzyme 2 , Brain/enzymology , Cardiovascular System/enzymology , Cardiovascular System/immunology , Digestive System/enzymology , Digestive System/immunology , Endocrine Glands/enzymology , Endocrine Glands/immunology , Female , Gene Expression Profiling , Humans , Immune System/enzymology , Interferons/immunology , Lung/enzymology , Lung/immunology , Lymphocytes/immunology , Male , Middle Aged , Organ Specificity , Peptidyl-Dipeptidase A/blood , RNA-Seq , Receptors, Coronavirus , Receptors, Virus/blood , SARS-CoV-2 , Sex Factors , Urogenital System/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL